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Automated Analysis of Unregistered Multi-View
Mammograms With Deep Learning

Gustavo Carneiro, Jacinto Nascimento, and Andrew P. Bradley

Abstract— We describe an automated methodology for
the analysis of unregistered cranio-caudal (CC) and medio-
lateral oblique (MLO) mammography views in order to
estimate the patient’s risk of developing breast cancer.
The main innovation behind this methodology lies in the
use of deep learning models for the problem of jointly
classifying unregistered mammogram views and respective
segmentation maps of breast lesions (i.e., masses and
micro-calcifications). This is a holistic methodology that can
classify a whole mammographic exam, containing the CC
and MLO views and the segmentation maps, as opposed
to the classification of individual lesions, which is the
dominant approach in the field. We also demonstrate that
the proposed system is capable of using the segmentation
maps generated by automated mass and micro-calcification
detection systems, and still producing accurate results. The
semi-automated approach (using manually defined mass
and micro-calcification segmentation maps) is tested on
two publicly available data sets (INbreast and DDSM), and
results show that the volume under ROC surface (VUS) for
a 3-class problem (normal tissue, benign, and malignant) is
over 0.9, the area under ROC curve (AUC) for the 2-class
“benign versus malignant” problem is over 0.9, and for
the 2-class breast screening problem (malignancy versus
normal/benign) is also over 0.9. For the fully automated
approach, the VUS results on INbreast is over 0.7, and the
AUC for the 2-class “benign versus malignant” problem is
over 0.78, and the AUC for the 2-class breast screening
is 0.86.

Index Terms— Deep learning, mammogram, multi-view
classification, transfer learning.

|. INTRODUCTION

ECENTLY published data suggests that breast cancer
is responsible for 23% of all cancer cases and 14% of
cancer related deaths amongst women worldwide [45]. One
of the most effective tools in the reduction of morbidity and
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Fig. 1. The main contribution of this paper is the joint analysis of

the unregistered cranio-caudal (CC) and medio-lateral oblique (MLO)
mammography views with the automatically generated mass (yellow
annotations) and micro-calcification (red annotations) segmentation
maps. This is a holistic methodology that can classify a whole mam-
mographic exam, with the CC and MLO views and the segmentation
maps, as opposed to the classification of individual lesions, which is the
mainstream approach of the field. The functionality of our methodology
relies on the use of deep learning models, pre-trained with computer
vision datasets [4], [5], [15], [81].

mortality associated with breast cancer is based on its early
detection via the analysis of two mammographic views of
each breast [52]: the medio-lateral oblique view (MLO) and
the cranio-caudal view (CC) - see Fig. 1. This analysis is
essentially based on the detection and classification of breast
lesions (note the yellow and red contours of breast masses
and micro-calcifications (MC) in Fig. 1), which is usually
manually performed by a radiologist - a recent study indicates
that this manual analysis has a specificity of 91% and a
sensitivity of 84% in the classification of breast cancer [38].
Giger et al. [38] have suggested that such performance can
be improved with the use of a second reading of the same
mammogram either by another radiologist or by a computer-
aided diagnosis (CAD) system [38]. Hence, the development
of CAD systems that can be used as adjunct reader is an
important step towards the acceptance of such systems in
clinical practice.

The vast majority of mammogram analysis systems are
focused on the analysis (i.e., detection, segmentation and
classification) of individual lesions (e.g., masses or MCs) [38],
[59], [75] using hand-crafted image features and traditional
machine learning classifiers [9]. The outcome of this analy-
sis usually consists of the classification of each lesion into
benign or malignant. Lesion detection methods are usually
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based on a cascade of classifiers that aim to eliminate an
increasingly larger number of false positives while keeping
a large proportion of the true positives [6], [7], [12], [22],
[30], [48], [49], [67], [76], [78]. The assumption that not
only the appearance, but also the shape of a lesion is impor-
tant in its classification motivates the development of lesion
segmentation methods [3], [13], [23], [64]. The final lesion
classification step generally uses hand-crafted appearance and
shape features, extracted from the detected and segmented
lesion, that are used as input to a binary classifier that classifies
the lesion into benign or malignant [19], [28], [71], [77], [79].
The use of multiple views of the same lesion has also been
explored [38], [43], and current evidence suggests that such
approaches can potentially improve the performance of the
system. The main issues with these approaches lie in the sub-
optimality (with respect to the classification goal) inherent
to the process of hand-crafting features (a notable exception
is the lesion detection method by Kooi et al. [48]), and the
independent analysis of each lesion that ignores dependencies
and contextual information.

In this paper, we propose a new methodology that analyses
a two-view mammographic exam in a fully automated and
holistic manner. The main innovation behind our approach
is the use of a deep learning model [50], [53] that receives
as input, both the CC and MLO mammographic views and
the segmentation maps of the breast lesions (i.e., masses
and MCs) and outputs a classification of the exam into
normal tissue, benign or malignant (hereafter, we refer to the
normal tissue class as negative). The proposed methodology
faces the following challenges: 1) deep learning models need
annotated datasets that are orders of magnitude larger than
what is currently available in medical imaging, and 2) the joint
analysis of unregistered multi-view (CC and MLO) and multi-
modal inputs (images and segmentation maps) require high-
level features that represent the global information present in
those inputs.

The first challenge is addressed with transfer learning [4],
[5], [81], where the deep learning model is first trained with
a large annotated computer vision dataset [66], and then re-
trained (or fine-tuned) using small annotated mammogram
datasets. In parallel to the development of our own work,
other similar approaches have been proposed, such as the
use of ImageNet [66] to pre-train a deep learning model that
identifies pathologies in chest x-ray images [4], [5], or the
thorough study produced by Tajbakhsh et al. [74] on the
use of non-medical image datasets to pre-train deep learning
models to be used in various medical image analysis tasks.
The second challenge is solved with the use of the high-level
features produced by the deep learning models, where we
assume that the high-level nature of the deep learning features
reduces the need for a low-level matching (registration) of
the input data [8]. After the development of our original
work [15], which is extended in this paper, there have been
relatively similar proposals that classify whole or large patches
of mammograms using deep learning models [27], [37], [44].
In fact, Dhungel et al’s and Geras et al’s [27], [37]
approaches represent extensions to our own original work [15].
We test two versions of our proposed methodology:

a semi-automated approach that uses the manually defined seg-
mentation maps of the lesions, and a fully automated approach
that uses the lesion detection results from Dhungel et al. [22]
and Lu et al. [55]. Compared to previously proposed methods
in the field, our model is able to automatically learn the
features that are optimal for the classification problem (as
opposed to hand-crafting them) and to process a full mam-
mographic exam in a holistic manner, without making lesion
independence assumptions. The semi-automated approach is
assessed on two publicly available datasets (INbreast [57] and
DDSM [42]), where it produces state of the art results for
the 3-class and 2-class classification problems. The fully auto-
mated approach assessed on INbreast [57] shows a competitive
result with respect to the semi-automated approach on the
same classification problems.

This paper is an extension of two preliminary
works [14], [15], where the innovations consist of: 1) the
fully automated methodology based on automatically detected
masses and MCs, 2) a study on the stage of the deep learning
model to merge the different modalities, 3) a study involving
a larger set of data augmentation, and 4) a new way of
joining the input images as 3-D inputs rather than a collection
of 2-D data.!

[l. LITERATURE REVIEW

Deep learning models have been studied for
decades [53], but only recently they have achieved
important breakthroughs in computer vision and machine
learning [34], [39], [50], [82]. This achievement can be
explained by the availability of large annotated training
sets [66] and the fast training allowed by graphics processing
units. Compared to traditional machine learning models [9],
deep learning models offer the opportunity to automatically
learn features of different abstraction levels directly from
raw input, based on high-level Cclassification objective
functions [8] and can facilitate the use of multi-modal
inputs [58]. There are currently four main trends in the
development of deep learning models for medical image
analysis. The first is on the acquisition of massive training
sets containing only the original annotations that are already
present in the dataset (e.g., diagnosis, radiology reports,
and not manual delineations of lesions). These methods
are producing outstanding results, which are comparable
to expert radiologists’ performance, e.g., Esteva et al. [32]
have developed a deep learning model capable of classifying
skin lesions trained directly from image pixels and disease
labels as inputs, using a dataset of 129450 clinical images.
This model achieves competitive performance with respect
to 21 board-certified dermatologists - unprecedented in
terms of the scale of the training set and the accuracy
of the classification. Similarly, a recently deep learning
method developed by Gulshan er al. [40] has shown to
have high sensitivity and specificity for detecting referable
diabetic retinopathy in retinal fundus photographs, where
the training set contained 128175 annotated retinal images.
A similar work has been proposed by Geras et al. [37], who

'We thank one of the anonymous reviewers for proposing this variation.
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mention in the paper that their model is close to our own
previously proposed multi-view mammogram deep learning
classifier [14], [15], but their approach has been trained
with 103000 high-resolution images and results show the
importance of using large training sets and high-resolution
images.

The second main trend lies in the development of deep
learning models that use the small training sets already avail-
able in the field. The major challenge behind this second
trend is that such small datasets are rarely enough for train-
ing the high capacity deep learning models. Even though
it is possible in some tasks to extract large training sets
from these small datasets [20], [65], for most situations,
new solutions are necessary to address this issue. This is
one of the most studied topics in deep learning for med-
ical image analysis [1], [4], [5], [14]-[16], [21], [33], [54],
where systematic studies have been published [4], [5], [72],
[74], [80]. The current evidence shows that transfer learning
appears to address the small dataset challenge, where models
can be pre-trained either in an unsupervised manner with med-
ical image datasets or in a supervised way using non-medical
image datasets. The third trend lies in the analysis of multiple
input views to produce a single output - this idea has been
explored in medical image analysis problems [11], [14], [15],
[17], [27]1, [37], [41] and computer vision tasks [73]. Finally,
the fourth trend is the holistic analysis of medical images [14],
[15], [35], [36], [47], [61], [62], [83] as opposed to the
localised processing, which in general depend on the local-
isation and possible segmentation of structures before a clas-
sification can be achieved [1], [2], [22]-[26], [29], [31], [38],
[46], [48], [63].

In this paper, the main novelty consists of the use of
un-registered multi-view inputs, where images and segmen-
tation maps are processed in a holistic manner (our original
paper on the holistic analysis was also developed in parallel
to the approaches cited above - note that even though we use
detection of lesions, we process the whole image and not each
lesion independently). We also explore the transfer learning
approaches mentioned above to deal with the limited amount
of training samples.

The more classic methods designed for the analysis of
mammograms [38] are either based on holistic approaches that
rely on traditional texture analysis [56], or on the localised
analysis of lesions. The latter approach depends on a process
that can be sub-divided into three stages [19], [68]: 1) lesion
detection, 2) lesion segmentation and 3) lesion classification.
Usually, methods based on the localised analysis of lesions are
limited to processing single views, but there are exceptions
that work with multiple views [69]. Moreover, there have
also been important developments in the exploration of deep
learning models within such classical framework. In particular,
the problem of detecting lesions with deep learning models
has been studied with the use of large annotated training
sets [48] or the use of a cascade of models and small training
sets [22]. Lesion segmentation with deep learning has been
addressed with the use of large training sets [29], [31] or with
the use of probabilistic graphical models and small training
sets [23]-[25]. Finally, lesion classification methods that rely

TABLE |
PuBLICLY AVAILABLE DATASETS USED IN THIS WORK

Datasets: INbreast [57] DDSM [42] Imagenet [66]

# Images 410 680 1.35x10°

# Patients 115 172 -

# Classes 6 6 1000

Image Type Mammo Mammo Non-medical

Annotations BI-RADS + BI-RADS + Imagenet
Lesion delineation  Lesion delineation classes

on deep learning models are generally based on a direct
classification of the detected and segmented lesions [2], [26],
[46], [63]. It is important to notice that mammogram analysis
systems have two goals in general: 1) the classification of an
exam into normal (i.e., no findings), benign findings or malig-
nant findings; and 2) the localisation of such findings. The
sub-division adopted by classic methods is reasonable in the
sense that it tries to mimic how expert radiologists work, but
mathematically this sub-division makes restrictive assumptions
about the problem, such as that once the analysis is focused
in the lesions, the global information contained in the whole
image is assumed to be irrelevant. It is also assumed that
both the appearance and shape of the lesion are important
for the mammogram classification process. Finally, the objec-
tive functions used for each stage form goals that are not
necessarily linked with better classification — for example,
the minimisation of the overlap between the annotated and
detected bounding boxes is assumed to be important for
classification, but never properly tested (similarly for objective
functions used for segmentation).

[1l. MATERIALS AND METHODS

In this section, we first describe the datasets and deep
learning model used. Then we explain the methodological
details of our approach and the experimental setup.

A. Materials

The material used in this work are the images and anno-
tations present in the following publicly available datasets:
INbreast [57], DDSM [42] and Imagenet [66] -Table I shows
the number of images, patients and classes, the image type
and the annotations present in each dataset. For INbreast and
DDSM, a case represents the multi-view mammograms and
respective segmentation maps of masses and MCs extracted
from a single breast of a patient. In these two datasets,
cases are manually classified into six possible Breast Imaging
Reporting and Data System (BI-RADS) classes: 1) negative,
2) benign finding(s), 3) probably benign, 4) suspicious abnor-
mality, 5) highly suggestive of malignancy, and 6) proven
malignancy (see Fig. 2 for the distribution of classes in the
datasets considered by this paper). It is important to note
that the manual lesion delineations provided for DDSM are
significantly less precise than the annotations for INbreast,
as shown in Fig. 8 that presents examples of the mass and
MC manual annotations from DDSM.

The INbreast and DDSM datasets are represented by
D = (&P, D mPb) y POy peiefirights
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Fig. 2. Distribution of BI-RADS (left) and negative, benign and malignant
classes (right) for the cases in INbreast (blue) and DDSM (red), where
a case is represented by the MLO and CC mammographic views with
respective segmentation maps (MCs and masses) of a single breast
scan of a patient.

where X = {Xcc,XmLo} denotes the CC and MLO
mammography views, with Xcc, XmLo : © — R (L represents
the image lattice), ¢ = {ccc, emLo} and m = {mcc, mpro}
denote the MC and mass segmentation maps per view, with
cce, emLo, Mec, myo ¢ Q — {01}, y € Y = {0,1}¢
represents the BI-RADS classification with C classes,
p € {l,..., P} indexes the patients, and b € {left, right}
indexes the patient’s left and right breasts (each breast is
denoted as an individual case because the left and right
breasts may have different BI-RADS scores). Note in Fig. 2
that these datasets have a limited amount of cases belonging
to each of the six possible BI-RADS classes, so we propose
a new set of three classes: 1) negative, represented by
y = [1,0,0]T, when BI-RADS=1; 2) benign, denoted by
y = [0,1,0]7, with BILRADS € {2,3}; and 3) malignant,
represented by y = [0,0,1]", when BI-RADS € {4, 5,6}
(the rightmost graph in Fig. 2 shows the distribution for the
3-class problems in the datasets considered by this paper). The
Imagenet dataset containing non-medical images is denoted
by D =~{(§<">,§(”))}n, withX:Q > Randy e Y = {0, 1}€,
where C represents the cardinality of the set of classes in
the dataset D. This dataset is used for pre-training the deep
learning model, as explained below in more details.

B. Deep Learning Model

The deep learning model explored in this work is the
convolutional neural network (ConvNet) [50], [53] CNN-F
proposed by Chatfield et al. [18], which is a simplified version
of the AlexNet model [50]. This model is formally denoted
by f : X — ), where X represents the image space and Y
denotes the 3-class classification space. A ConvNet is a model
containing L. convolutional layers and K fully connected layers
defined as follows (see Fig. 3):

f(x;:0)
=fout(ffc,K(a Tt ffC,](fL(a T f] (Xa 61)9 s ,HL)aefC,l),
50fC,K)5 Hout)» (D

where { f,-(.)}l.L:1 represents a convolutional layer, §; denotes
the parameters of layer / of the ConvNet comprising the
weight matrix W; € RK>k>xmxn-1 and bias vector b; €
R™, with k; x k; denoting the size of the filters in layer /
that has n;_1 input channels and n; output channels (the
output of this convolutional layer usually passes through

INPUT 1 INPUT 2 IN|

PUT PUT 3 INPUT 5
3x ccvg.- 3x €C MC Mask |3x cc Mass Mask B MlOvI-w 3x MLO MC Mask
2-D INPUT: 6x 5

INPUT 1

INPUT 2

(a) INPUT

PRE-TRAINED FINE-TUNED
(imagenet) (mammogram)

4096 4096 3
nodes nodes nodes

(b)JOIN 1

@ PRE -TRAINED

FINE-TUNED
E 264 (rmagenet) (mammogram)
a e
. R (% ole
260 " ° omng nt
::— o

PRE-TRAINED FINE-TUNED

(|magenet) (mammogram)
409 40% 3
nodes nodes nodes

4 (]
S R S e e
‘ © | Malignant
o 9

40% 4096 3
nndes nodes  nodes

(c) JOIN 2

(d) JOIN 3

409 4096

@ nndes nad PRE TRAINED | FINE-TUNED
PIRNETAN (|magenet) (mammogram)
2 11311 5
E \ fid nndes
: O 5| e

c 77777/7"7::,/ O Malignant
L= s ;> H

(e)JOIN 4

INPUT I

Fig. 3. Multi-view ConvNet models using different types of merging
strategies for 2-D and 3-D models. The baseline model contains L = 5
convolutional layers, K = 2 fully connected layers and one final softmax
layer. The model can have 2-D or 3-D inputs (2), and be pre-trained and
fine-tuned in four different manners, as depicted in (b)-(e) (i.e., JOIN 1 to
JOIN 4), where for the 2-D model, there are six inputs and for the
3-D model there are two inputs.

a non-linear activation function and a sub-sampling stage),
Sfrek is a fully-connected layer with weights {ch,k};le
(with Wpo, € R"ek-1X"fck representing the connections
from fully connected layer £ — 1 to k) and biases {b fc,k};le
(with b € R"/e+), and foy represents a multinomial logistic
regression layer [50] containing the weights W,,,,; € R"/¢.K xC
and bias by, € RC.

The operation in each convolutional layer [ € {1, ..., L} of
the ConvNet is defined by:

Fi = fi(xi-1,61) = Wi xFi_1 + by, (2)

where x denotes the convolution operator, F; = [f; 1, ..., 1,1,

with Fy representing the input mammogram X or segmentation
maps ¢ or m. Following the L" convolutional layer, we have
fully connected layers that take as input the vectorised input
volume f; € Rzl (from F;) (where |f; | represents the length
of the vector f7) and apply K linear transforms, defined
by [50]:

ffc = ffC(FLa ch)
= (WfC,K',\ ) (WfC,lfL + be,l) > > +be,K)5 (3)

where fy. € R"e<X  The final classification layer is
defined by a softmax function over a linearly transformed
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input [50]:

four = four (ff6‘9 Oour) = Softmax(woutffc + bour), “4)
where softmax(z) = #;m, and f,,; € [0, 1]€ denotes the
output from the inference process, with C representing the
number of output classes. The CNN-F model [18] explored in
this work, depicted in Fig. 3, has an input of 264 x264 x 3 pix-
els (i.e., the input has three channels of 264 x264 pixels),
where the first convolutional stage has 64 11 x 11 filters and
a max-pooling that sub-samples the input by 2, the second
convolutional stage has 256 5 x 5 filters and a max-pooling
that sub-samples the input by 2, the third, fourth and fifth
convolutional stages have 256 3 x 3 filters (each) with no
sub-sampling, the first and second fully connected stages have
4096 nodes (each), and the multinomial logistic regression
stage has a softmax layer containing three nodes. Note that
we explore two types of model inputs (see Figures 3): 1) the
2-D input model takes the input image or segmentation map
and replicate it three times to fill the three input channels; and
2) the 3-D input model takes as input the image, mass and
MC segmentation maps of a single view (i.e., CC or MLO)
and feed them into the three input channels.

The training process for estimating 6 =
(61,...,00,0fc1,,...,0fc,k,00u] in (1) is based on
the minimisation of the cross entropy loss [50] over the
training set, defined as [50]:

N
1
£O) =~ 2 fourilogis 5)
i=1
where N represents the number of cases available for training.

C. Transfer Learning

The pre-training stage of the ConvNet in (1) uses the
Imagenet dataset D in order to model y* = f(X; 6), where
0= [51, R gL, ’vacjl, s gfc,[(, gouz]- This pre-training is
based on the minimisation of the cross-entropy loss in (5)
using the C classes from D. This pre-trained model is then
used to initiali~se the model~ parameters as follows:~ 0, = 51,
s 0L =01, Opc1 = Opc1, -+ 5, Ofc.k = Ofck, and
Oy 1s initialised with random values (normally distributed).
The fine-tuning consists of training this model by minimis-
ing the cross-entropy loss in (5) using the C classes from
D (see Fig. 3). The motivation behind initialising almost
all parameters with the pre-trained model is based on the
results published by Yosinski et al. [81] that show that the
success of similar fine-tuning processes depend on the use
of a large number of pre-trained layers. This fine tuning
process produces six 2-D models and two 3-D models, where
the 2-D models are represented by: 1) f(XmL0; OMLO.im)>
2) f(xcc:Occ,im)> 3) f(eMLo: OMLOme), 4) f(ecc; Occme),
5) f(mMLO: OMLOma) and 6) f(mcc; Occ,ma). The 3-D mod-
els are denoted by: 1) f([xML0, eMLO, MMLO]; OMLO3D), and
2) f([xcc, ecc, mecl; Occ3p)-

D. Multi-View Analysis

The multi-view analysis of mammograms is based on merg-
ing the six 2-D and two 3-D models introduced in Sec. III-C,

where we propose an evaluation that shows the performance
of the classifier as a function of which layer is used to merge
the models. The process of merging the models involves
the concatenation of the outputs from a particular layer,
as shown in Fig. 3. In particular, we test four types of merging:
1) “JOIN 1”: merge the representations F in (2) from the fine-
tuned models from Sec. III-C; 2) “JOIN 2”: merge the repre-
sentations F; in (2) from the fine-tuned models; 3) “JOIN 3”:
merge the representations Fz in (2) from the fine-tuned mod-
els; and 4) “JOIN 4”: merge the representations f ¢ in (3) from
the fine-tuned models. After merging, the multi-view model is
fine-tuned using the minimisation of the cross-entropy loss in
(5) with the C classes in D. In addition, we train four multi-
view 2-D models (and another four multi-view 3-D models)
using the manually defined segmentation maps and another
four multi-view 2-D models (+ four multi-view 3-D models)
for the automatically defined segmentation models. Given that
the use of a pre-trained model can be regarded as a training
regularisation approach, we compare it to another common
regularisation method: data augmentation [50], obtained by
randomly cropping the original training images (and respective
segmentation maps) with a bounding box, whose top-left and
bottom-right corners are uniformly sampled from a range of
[1], [10] pixels from the original corners. Note that when
augmenting the data, the same transformation is applied to the
mammogram view and respective mass and MC segmentations
maps, but the transformations applied to the two views of the
same breast may not be the same given that we do not have
the registration between these two views. Therefore, all models
specified above are trained with data augmentation by adding
5, 10, 20 and 50 new samples per training image.

E. Automated Lesion Detection

For the automated lesion detection methods, we use recently
proposed methods that produce state-of-the-art results in the
INbreast dataset [57]. In particular, we use the mass detection
methodology proposed by Dhungel er al. [22], consisting of
a cascade of deep learning detectors that select a relatively
large set of mass regions of interest (ROI), which are then
processed by a cascade of random forest classifiers [10]
that use appearance and shape features [78] extracted from
those ROIs. For the MC detection, we use the methodology
proposed by Lu et al. [55], which is based on a cascade of
boosting classifiers [70] that selects ROIs containing individual
MCs, where these classifiers also use appearance and shape
features [78] from those ROIs. We refer the reader to those
papers for more details.

F. Experimental Setup

The input CC and MLO mammograms are pre-processed
with local contrast normalisation in order to enhance the visu-
alisation of image features and Otsu’s segmentation [60] that
selects a tight bounding box from the mammogram containing
the breast region (see Fig. 7 for examples of the appearance of
the pre-processed mammograms). The bounding box extracted
from the mammogram is subsequently resized (via bi-cubic
interpolation) to 264 x 264 pixels. We also align the input
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Fig. 4. 3-Class Problem: VUS results on INbreast [57] (a-b) and

DDSM [42] (c) for “JOIN 4” (pre-trained - first column) for the multi-
modal (MultiView (2D) and (3D)) and individual inputs (mammographic
views and segmentation maps) as a function of training data augmen-
tation; and for all types of merging strategies (as displayed in Fig. 3)
of the pre-trained and randomly initialised multi-view models using the
2-D input (“JOIN 1” to “JOIN 4” - second column). Also notice that we
show the results for the semi-automated (rows a,c) and fully-automated
methods (row b). The p-values show the t-test results comparing the pre-
trained and randomly initialised models regarding the merging strategies
and data augmentation.

mammogram such that the pectoral muscle is always located
on the right-hand side of the image. The MC and mass
segmentation maps are represented by binary images that
are cropped, resized and flipped in the same way as their
respective mammograms.

For the transfer learning experiments, all models are pre-
trained [18] using the Imagenet dataset [66] that contains
1000 visual classes, 1.2x10° training, 50x103 validation
and 100x10° test images. If transfer learning is not used,
then the model parameters # in (1) are initialised with an
unbiased Gaussian with standard deviation 0.01. In all training
processes, the learning rate is fixed at 0.001, momentum is
equal to 0.9, weight decay is set to 0.0005, the mini-batch
size is 10 and the number of epochs is 20.

The automated lesion detection experiment is run only on
the INbreast dataset [57] because the manual segmentation
annotations are accurate enough to allow us to build effective
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Fig. 5. 2-Class Problem - lesion classification (benign vs malig-
nant): AUC (lesion classification) results on INbreast [57] (a-b) and
DDSM [42] (c) for “JOIN 4” (pre-trained - first column) for the multi-
modal (MultiView (2D) and (3D)) and individual inputs (mammographic
views and segmentation maps) as a function of training data augmen-
tation; and for all types of merging strategies (as displayed in Fig. 3)
of the pre-trained and randomly initialised multi-view models using the
2-D input (“JOIN 1” to “JOIN 4” - second column). Also notice that we
show the results for the semi-automated (rows a,c) and fully-automated
methods (rows b). The p-values show the t-test results comparing the pre-
trained and randomly initialised models regarding the merging strategies
and data augmentation.

mass and MC detection approaches [22], [55]. The imprecise
manual lesion segmentation present in the DDSM dataset [42]
(clearly seen in Fig. 8) does not allow the implementation of
lesion detection systems [22], [55], which have a detection
accuracy that is high enough to allow our proposed method-
ology to work reliably.

The classification accuracy is measured as follows. For a
3-class problem, with classes negative, benign and malignant,
the accuracy is measured with the volume under ROC sur-
face (VUS) [51]. The lesion classification “benign vs malig-
nant” 2-class problem is assessed with the area under ROC
curve (AUC), where it is assumed that all cases contain at
least one finding (i.e., an MC or a mass). The breast screening
“malignant vs benign/normal” 2-class problem is also assessed
with AUC. We assess the semi-automated method (using the
manually defined segmentation maps of masses and MCs)
on both datasets, and the fully-automated method (using the
automatically defined segmentation maps of lesions explained
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Fig.6. 2-Class problem-breast screening (negative/normal findings
vs malignant): AUC (lesion classification) results on INbreast [57] (a-b)
and DDSM [42] (c) for “JOIN 4” (pre-trained - first column) for the multi-
modal (MultiView (2D) and (3D)) and individual inputs (mammographic
views and segmentation maps) as a function of training data augmen-
tation; and for all types of merging strategies (as displayed in Fig. 3)
of the pre-trained and randomly initialised multi-view models using the
2-D input (“JOIN 1” to “JOIN 4” - second column). Also notice that we
show the results for the semi-automated (rows a,c) and fully-automated
methods (rows b). The p-values show the t-test results comparing the pre-
trained and randomly initialised models regarding the merging strategies
and data augmentation.

in Sec. III-E) on INbreast. Finally, for the INbreast dataset,
results are computed from a 5-fold cross validation experi-
ment, where each fold consists of a training set containing
90 patients and a testing set with 25 patients. For DDSM,
the results are calculated using the suggested division of
training and testing sets for DDSM [42], with 86 patients for
training and 86 for testing - this allows a direct comparison
with previously reported results. All statistical significance
tests are based on the unpaired t-test.

V. RESULTS

Before presenting the results of our proposed methodology,
we summarised the results of the lesion detection systems pre-
sented in Sec. III-F. For the INbreast dataset, using 5-fold cross
validation experiment, the automated MC detection [55] can
detect 40% of the MCs at one false positive per image (FPI),
and 80% of the MCs at 10 FPI, while the mass detection [22]
can detect around 96% of the masses at around 1 FPI and more

than 98% of the masses at 10 FPI. The operating point for both
detectors was chosen in order to have on average 1 FPIL

The assessment of our approach is depicted
in Figures 4-6. We focus the explanation of the results
with respect to the following points: 1) individual versus
multi-modal inputs, 2) different types of merging strategies
(JOIN 1 to 4), 3) pre-trained versus randomly initialised
models, and 4) fully- versus semi-automated methods.
We also show several visual results in Figures 7 and 8.

The first column of Figures 4-6 show the VUS (3-class
problem) and AUC (2-class problems) results on INbreast and
DDSM for the individual inputs (CC and MLO views,
mass and MC segmentation maps) and the multi-modal
input (labelled as multi-view). For the majority of the
cases, the main evidence noticed is that the multi-modal input
produces classification results that tend to be at least as good
as the best result from the individual inputs. Furthermore,
the second columns of Figures 4—6 show the results produced
by the different types of merging strategies (JOIN 1 to 4)
of the Multi-view ConvNet models averaged over the all
different amounts of data augmentation considered in this work
(1, 5, 10, 20, and 50). In all cases, it is clear that the
JOIN 4 strategy for the pre-trained model produces the best
overall results. For the randomly initialised model, the trend is
slightly different with the JOIN 1,2,3 strategies producing sim-
ilar results and JOIN 4 with a slightly worse performance. It is
also noticeable that the pre-trained model is consistently bet-
ter than the randomly initialised counterpart, as evidenced
by the statistically significant t-test results. Finally, another
important point to notice is the difference in performance
between the fully and semi-automated method, shown
in Figures 4-6 for the INbreast dataset. More specifically,
row (a) of these figures display the semi-automated methods
and rows (b) show the fully automated cases (on INbreast).
There is a significant performance deterioration for the 3-class
problem, which is less significant for the 2-class problems.

In Tab. II, we compare our results to the latest state-of-
the-art (SoA) results published in the field [27], [37], [83],
[83] - note that all these SoA results have been published
after our original publication [15], but before the submission
of our revised manuscript, so these SoA methods have been
developed either in parallel or after our own approach. The
t-test between our proposed method and Dhungel et al. [27]
for breast screening using automated detected lesions on
INbreast shows p < 1 x 10719 and p > 0.05 when relying
on manually detected lesions. Also, the t-test between our
proposed method and Zhu et al. [83] for breast screening using
automated detected lesions on INbreast shows p > 0.05 (in
fact, Zhu et al. [83]’s approach does not need an automated
lesion detection stage - but they can detect lesion as a side
effect of their approach). We cannot compare directly the
meanAUC results between our approach and Geras ef al. [37]
because they have been obtained from different datasets and
different classification problems (classes are different - see
column “Classes”). Finally, using our proposed model, we also
compute the specificity and sensitivity results for the breast
screening problem using the operating point closest to the
equal error rate on the ROC curves. For INbreast, using
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Correct (a-c) and incorrect (d) classifications on INbreast [57] test cases using Imagenet pre-trained “JOIN 4” model with 50x data

augmentation, where the ground truth (GT) and the automatic (AUTO) mass (GT in white, AUTO in yellow) and MC (GT in green, AUTO in cyan)

detections and classifications (text below images) are shown.

a) Ground truth: negative C) Ground truth: malignant
Fully automated classification: negative Fully automated classification: malignant

malignant

Ground truth:
D) Fully automated classification: benign

benign

d Ground truth:
Fully automated classification: benign

Fig. 8. Correct (a-c) and incorrect (d) classifications on DDSM [42]
test cases using Imagenet pre-trained “JOIN 4” model with 50x data
augmentation, where the ground truth mass (white) and MC (green)
detections and classifications (text below images) are shown. Notice that
the manual mass and MC annotations are significantly less precise than
the ones from INbreast, shown in Fig. 7.

manually detected lesions, we have sp = 0.92 &+ 0.08 and
se = 0.69 £ 0.28, and using automatically detected lesions,
we have sp = 0.66 £0.14 and se = 0.69 & 0.23. For DDSM,
using manually detected lesions, we have sp = 0.97 & 0.01
and se = 0.94 + 0.01.

We also show several correctly and incorrectly (Fig. 7)
classified test cases from INbreast produced by the fully-
automated method (JOIN 4) trained with 50x data augmen-
tation, and test cases from DDSM (Fig. 8) produced by
the semi-automated method (JOIN 4) trained with 50x data
augmentation. Finally, running Matconvnet [18] on a standard
desktop (2.3GHz Intel Core i7 with 8GB, and graphics card
NVIDIA GeForce GT 650M 1024 MB), the time for training
six models and the multi-view model (without data augmenta-
tion) is one hour. With the addition of 10x data augmentation,
the training time increases to four hours, with 20 x data
augmentation, the training time increases to seven hours, and
with 50 x data augmentation, the training time increases to
over 12 hours.

V. DISCUSSION

Figures 4-6 show that our proposed approach can jointly
classify unregistered and multi-modal (images and segmen-
tation maps) inputs using high-level deep learning features.
In particular, it is important to observe that amongst
pre-trained models, “JOIN 4” presents better results than
“JOIN 1,2,3”, suggesting that higher level features in the
deep learning model are more appropriate to achieve the goal
of multi-view classification. Similar conclusions have been
achieved by previous approaches that showed that the merging
of deep learning models is more effective when they are joined
at the high-level layers [8]. Moreover, for the randomly ini-
tialised models, “JOIN 4” performs worse than “JOIN 1,2,3”,
suggesting that the larger number of parameters present in that
model (as shown in Fig. 3) makes the use of pre-trained models
more critical. Another important point shown in Figures 4—6
is that all results indicate that the use of the 3-D input does
not lead to competitive classification results - this may happen
because these networks are likely to need channels containing
highly correlated data, but this is a topic that needs more study
in future works. Furthermore, Figures 4—6 suggest that pre-
trained models lead to statistically significant improvements
compared to the randomly initialised ones.

The little difference between the VUS for the 3-class prob-
lem and AUC for the 2-class problem (benign vs malignant)
in the semi-automated model can be explained by the fact
that the proposed model is nearly perfect in classifying cases
that do not contain any findings, demonstrating the ability of
the model to classify an input without lesions as negative - a
high level classification challenge. Furthermore, given the false
positive detections produced by the automated lesion detectors,
the fully-automated model must try to classify negative cases
even with the presence of false positive mass or MC detections,
which is shown to happen in Fig. 7. From Figures 4-0, we see
that the results for the fully-automated multi-view pre-trained
models is better than the individual results for the 3-class
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TABLE Il
THIS TABLE DISPLAYS FOR EACH SoA METHOD (PROPOSED: PRE-TRAINED, JOIN4, WITH 50 x DATA AUGMENTATION), THE DATASET
(COLUMNS 2-5), IF IT IS FULLY AUTOMATED (COLUMN “AUTO”), THE 3-CLASS (VUS) RESULT, THE LESION CLASSIFICATION (LC)
AND BREAST SCREENING (BS) 2-CLASS RESULTS, AND THE MEANAUC RESULTS (THE MEANAUC [37] 1S COMPUTED BY TAKING
THE AVERAGE OF THREE CLASSIFICATION PROBLEMS BASED ON MAKING ONE OF THE THREE CLASSES POSITIVE AND THE
OTHER TWO, NEGATIVE). THE SYMBOL ‘?’ INDICATES THAT THE RESULT IS NOT PUBLICLY AVAILABLE
Method | Dataset | #cases | # images | Classes [ Auto | VUS [ AUC (LC) | AUC (BS) [ meanAUC |
Proposed INbreast 115 410 {Neg., Ben., Mal.} NO | 0.94+£0.05 | 0.94+0.05 | 0.91+0.08 | 0.87£0.08
Proposed DDSM 172 680 {Neg., Ben., Mal.} NO 0.96 +0.05 | 0.96 £0.05 | 0.994+0.01 | 0.91 +0.03
Dhungel et al. [27] | INbreast 115 410 {Neg., Ben., Mal.} NO ? ? 0.91 £ 0.03 ?
Proposed INbreast 115 410 {Neg., Ben., Mal.} YES | 0.684+0.14 | 0.78 =0.09 | 0.86+0.09 | 0.72+£0.10
Dhungel et al. [27] | INbreast 115 410 {Neg.,Ben.,Mal.} | YES ? ? 0.80 + 0.04 ?
Zhu et al. [83] INbreast 115 410 {Neg., Ben., Mal.} YES ? ? 0.86 +0.03 ?
Geras et al. [37] Private | ~ 18K | ~ 100K | BIRADS € {0,1,2} | YES ? ? ? 0.69

problem, but on par with the best individual input for the
2-class problems. This also indicates robustness to the false
positive detections of the automated lesion detectors, but it
also shows that such false positive detections have a negative
impact in the ability of the model to classify correctly a
whole exam in a holistic manner. In general, the models show
poor performance for the single view classifications, which
may happen because cases where BI-RADS > 1 may contain
annotations for either MC or mass, but not for both lesions.
Moreover, mammographic views (CC and MLO) may have
insufficient information for a robust classification, especially
considering that they are down-sampled around ten times from
their original size. Finally, in the 3-class problem, the MC
segmentation maps produce better classification results in
isolation than mass maps, which in turn are better than the
mammograms, while for 2-class problems, mass maps tend
to produce better classification results than MC maps. This
is evidence that these segmentation maps have different roles
depending on the classification problem being studied.

The comparison with SoA methods in Tab. II shows that our
approach is competitive with methods effectively published
after our own original publication [15]. We can also com-
pare our approach with previously published semi-automated
lesion classification methods [38], which produce and AUC in
[0.9, 0.95] for MCs and mass classification [19], [79]. Hence,
our proposed method is competitive on INbreast (our AUC in
[0.9,0.98]) and superior on DDSM (our AUC in [0.91, 1.0])
with respect to these approaches. In addition, we can also
compare our results to more recently proposed methods based
on deep learning. Dhungel et al.’s semi-automated mass clas-
sification method [26] has produced an AUC = 0.91, and
the fully automated has yielded an AUC = 0.76 on INbreast
- these results are comparable, but slightly worse than our
results. Finally, the sensitivity and specificity results shown
by our proposed model is competitive to the results produced
by radiologists in breast screening classification when we rely
on manual lesion annotation. However, when considering the
fully automated method, ours and current SoA methods still
need to match human performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that high-level deep learning
features can be used in the classification of unregistered

multi-view and multi-modal input mammograms and seg-
mentation maps. The use of such deep learning models is
facilitated by the use of models that have been pre-trained with
computer vision datasets containing millions of non-medical
images. Our results shown in Sec. IV can be used as a bench-
mark in the field given that both datasets are publicly available.
We believe that our proposed work introduces an important
research topic to the field: the analysis of un-registered multi-
view and multi-modal medical images. We plan to extend
our proposed approach in the following directions: 1) make
it robust to the large number of false positives produced by
the automated lesion detections, 2) remove the dependence
on manual lesion annotations for training the deep learning
model and rely only on the annotations available from the clin-
ical dataset [83] (e.g., mammogram classification, radiology
reports, and patient data), 3) use large scale datasets containing
high-resolution images [37], and 4) combine different breast
imaging modalities.
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